Distribution Tables

Multinomial Distribution Reference

Complete multinomial distribution reference guide with probability formulas, examples, and calculations for multi-category outcomes.

Multinomial Distribution Reference

The multinomial distribution generalizes the binomial distribution to multiple categories. It models the probability of observing specific counts across k categories in n trials.

Probability Formula

P(X₁ = n₁, X₂ = n₂, …, Xₖ = nₖ) = (n! / (n₁! × n₂! × … × nₖ!)) × p₁^n₁ × p₂^n₂ × … × pₖ^nₖ

Where:

  • n = total number of trials
  • nᵢ = number of outcomes in category i
  • pᵢ = probability of category i
  • k = number of categories
  • n₁ + n₂ + … + nₖ = n
  • p₁ + p₂ + … + pₖ = 1

Dice Rolling Examples (6 categories, equal probability)

Rolling a Fair Die n Times

Each outcome has probability p = 1/6

n rollsOutcome PatternProbability
6(1,1,1,1,1,1) - each face once0.0154
6(2,1,1,1,1,0) - one face twice0.2315
6(3,1,1,1,0,0) - one face 3 times0.1543
6(2,2,1,1,0,0) - two faces twice0.2315
6(6,0,0,0,0,0) - all same face0.0002

P(all different) when rolling n dice

n diceP(all different)
11.0000
20.8333
30.5556
40.2778
50.0926
60.0154

Trinomial Distribution (k = 3)

n = 5 trials with p₁ = p₂ = p₃ = 1/3

(n₁, n₂, n₃)Probability
(5, 0, 0)0.0041
(4, 1, 0)0.0206
(3, 2, 0)0.0412
(3, 1, 1)0.0823
(2, 2, 1)0.1235

n = 6 trials with p₁ = 0.5, p₂ = 0.3, p₃ = 0.2

(n₁, n₂, n₃)Probability
(6, 0, 0)0.0156
(5, 1, 0)0.0281
(5, 0, 1)0.0188
(4, 2, 0)0.0211
(4, 1, 1)0.0281
(3, 3, 0)0.0084
(3, 2, 1)0.0337
(2, 2, 2)0.0135

Blood Type Distribution (US Population)

Blood type probabilities: O = 0.44, A = 0.42, B = 0.10, AB = 0.04

Sample of n = 10 people

(O, A, B, AB)Probability
(4, 4, 1, 1)0.0587
(5, 4, 1, 0)0.0391
(4, 4, 2, 0)0.0293
(5, 3, 2, 0)0.0352
(4, 5, 1, 0)0.0373
(4, 4, 0, 2)0.0029

Expected Values and Covariances

Mean

E[Xᵢ] = n × pᵢ

Variance

Var(Xᵢ) = n × pᵢ × (1 - pᵢ)

Covariance

Cov(Xᵢ, Xⱼ) = -n × pᵢ × pⱼ (for i ≠ j)

Example: n = 100, p₁ = 0.3, p₂ = 0.5, p₃ = 0.2

CategoryE[Xᵢ]Var(Xᵢ)
13021
25025
32016

Cov(X₁, X₂) = -100 × 0.3 × 0.5 = -15


Multinomial Coefficient Calculator

The multinomial coefficient:

C(n; n₁, n₂, …, nₖ) = n! / (n₁! × n₂! × … × nₖ!)

Common Values

n(n₁, n₂, …)Coefficient
3(1, 1, 1)6
4(2, 1, 1)12
4(2, 2)6
5(2, 2, 1)30
5(3, 1, 1)20
6(2, 2, 2)90
6(3, 2, 1)60
6(4, 1, 1)30
10(3, 3, 2, 2)25,200
10(4, 3, 2, 1)12,600
10(5, 3, 2)2,520

Chi-Square Goodness of Fit

The multinomial distribution is the basis for chi-square goodness-of-fit tests.

Test Statistic

χ² = Σ (Oᵢ - Eᵢ)² / Eᵢ

Where:

  • Oᵢ = observed count in category i
  • Eᵢ = expected count = n × pᵢ

Degrees of Freedom

df = k - 1


Example Problems

Example 1: Dice Rolling

Problem: Roll a fair die 10 times. What’s P(exactly 2 ones, 2 twos, 2 threes, and 4 other outcomes)?

Solution:

  • n = 10, k = 6
  • (n₁, n₂, n₃, n₄, n₅, n₆) where n₁=2, n₂=2, n₃=2, and rest total 4
  • Need to sum over all ways the remaining 4 can be distributed
  • This requires summing multiple multinomial probabilities

Example 2: Survey Responses

Problem: 30% prefer A, 50% prefer B, 20% prefer C. In 5 surveys, P(2A, 2B, 1C)?

Solution:

  • n = 5, (n₁, n₂, n₃) = (2, 2, 1)
  • P = (5!/(2!×2!×1!)) × 0.3² × 0.5² × 0.2¹
  • P = 30 × 0.09 × 0.25 × 0.2
  • P = 0.135

Example 3: Genetics

Problem: Mendel’s peas: 9:3:3:1 ratio expected. In 16 offspring, P(9 round-yellow, 3 round-green, 3 wrinkled-yellow, 1 wrinkled-green)?

Solution:

  • p₁ = 9/16, p₂ = 3/16, p₃ = 3/16, p₄ = 1/16
  • n = 16, (n₁, n₂, n₃, n₄) = (9, 3, 3, 1)
  • P = (16!/(9!×3!×3!×1!)) × (9/16)⁹ × (3/16)³ × (3/16)³ × (1/16)¹
  • P ≈ 0.0416

Relationship to Other Distributions

RelationshipDescription
BinomialMultinomial with k=2
CategoricalSingle trial (n=1)
DirichletConjugate prior

When to Use Multinomial

✓ Multiple categories (k > 2)
✓ Fixed number of trials
✓ Categories are mutually exclusive
✓ Probabilities sum to 1
✓ Independent trials


Applications

  • Genetics: Phenotype ratios
  • Marketing: Brand preferences
  • Elections: Vote distributions
  • Quality Control: Defect categories
  • Surveys: Response distributions
  • Biology: Species counts

Advertisement

Need to calculate values?

Use our free calculators to compute statistics without looking up tables manually.

Browse Calculators →