Distribution Tables

Poisson Distribution Table

Poisson distribution probability table with cumulative and individual probabilities for various lambda (λ) values.

Poisson Distribution Table

The Poisson distribution models the number of events occurring in a fixed interval of time or space, given a known average rate (λ).

Poisson Probability Formula

The probability of observing exactly k events is:

P(X = k) = (e^(-λ) × λ^k) / k!

Where:

  • λ (lambda) = average rate (mean number of events)
  • k = number of events
  • e ≈ 2.71828

Cumulative Probabilities P(X ≤ k)

λ = 0.5 to 2.5

kλ=0.5λ=1.0λ=1.5λ=2.0λ=2.5
00.60650.36790.22310.13530.0821
10.90980.73580.55780.40600.2873
20.98560.91970.80880.67670.5438
30.99820.98100.93440.85710.7576
40.99980.99630.98140.94730.8912
51.00000.99940.99550.98340.9580
61.00000.99990.99910.99550.9858
71.00001.00000.99980.99890.9958
81.00001.00001.00000.99980.9989
91.00001.00001.00001.00000.9997
101.00001.00001.00001.00000.9999

λ = 3.0 to 5.0

kλ=3.0λ=3.5λ=4.0λ=4.5λ=5.0
00.04980.03020.01830.01110.0067
10.19910.13590.09160.06110.0404
20.42320.32080.23810.17360.1247
30.64720.53660.43350.34230.2650
40.81530.72540.62880.53210.4405
50.91610.85760.78510.70290.6160
60.96650.93470.88930.83110.7622
70.98810.97330.94890.91340.8666
80.99620.99010.97860.95970.9319
90.99890.99670.99190.98290.9682
100.99970.99900.99720.99330.9863
110.99990.99970.99910.99760.9945
121.00000.99990.99970.99920.9980
131.00001.00000.99990.99970.9993
141.00001.00001.00000.99990.9998
151.00001.00001.00001.00000.9999

λ = 6.0 to 10.0

kλ=6.0λ=7.0λ=8.0λ=9.0λ=10.0
00.00250.00090.00030.00010.0000
10.01740.00730.00300.00120.0005
20.06200.02960.01380.00620.0028
30.15120.08180.04240.02120.0103
40.28510.17300.09960.05500.0293
50.44570.30070.19120.11570.0671
60.60630.44970.31340.20680.1301
70.74400.59870.45300.32390.2202
80.84720.72910.59250.45570.3328
90.91610.83050.71660.58740.4579
100.95740.90150.81590.70600.5830
110.97990.94670.88810.80300.6968
120.99120.97300.93620.87580.7916
130.99640.98720.96580.92610.8645
140.99860.99430.98270.95850.9165
150.99950.99760.99180.97800.9513
160.99980.99900.99630.98890.9730
170.99990.99960.99840.99470.9857
181.00000.99990.99930.99760.9928
191.00001.00000.99970.99890.9965
201.00001.00000.99990.99960.9984

λ = 12 to 20

kλ=12λ=14λ=16λ=18λ=20
50.02030.00550.00140.00030.0001
60.04580.01420.00400.00100.0003
70.08950.03160.01000.00290.0008
80.15500.06210.02200.00710.0021
90.24240.10940.04330.01540.0050
100.34720.17570.07740.03040.0108
110.46160.26000.12700.05490.0214
120.57600.35850.19310.09170.0390
130.68150.46440.27450.14260.0661
140.77200.57040.36750.20810.1049
150.84440.66940.46670.28670.1565
160.89870.75590.56600.37510.2211
170.93700.82720.65930.46860.2970
180.96260.88260.74230.56220.3814
190.97870.92350.81220.65090.4703
200.98840.95210.86820.73070.5591
210.99390.97120.91080.79910.6437
220.99700.98330.94180.85510.7206
230.99850.99070.96330.89890.7875
240.99930.99500.97770.93170.8432
250.99970.99740.98690.95540.8878

Individual Probabilities P(X = k)

λ = 5.0

kP(X = k)
00.0067
10.0337
20.0842
30.1404
40.1755
50.1755
60.1462
70.1044
80.0653
90.0363
100.0181

How to Calculate Probabilities

Individual Probability: P(X = k)

P(X=k)=P(Xk)P(Xk1)P(X = k) = P(X \leq k) - P(X \leq k-1)

“At least” Probability: P(X ≥ k)

P(Xk)=1P(Xk1)P(X \geq k) = 1 - P(X \leq k-1)

Range: P(a ≤ X ≤ b)

P(aXb)=P(Xb)P(Xa1)P(a \leq X \leq b) = P(X \leq b) - P(X \leq a-1)


When to Use Poisson Distribution

✓ Events occur independently
✓ The rate (λ) is constant
✓ Two events cannot occur simultaneously
✓ Counting events in a fixed interval


Common Applications

Applicationλ represents
Call centerCalls per hour
ManufacturingDefects per unit
TrafficAccidents per month
BiologyMutations per generation
QueuingArrivals per time period
InsuranceClaims per year

Poisson Mean and Variance

ParameterValue
Mean (μ)λ
Variance (σ²)λ
Standard Deviation (σ)√λ

Note: For Poisson, mean = variance = λ


Example Problems

Example 1: Exact Probability

Problem: A call center receives an average of 4 calls per hour. What is P(exactly 3 calls)?

Solution (λ = 4):

  • P(X ≤ 3) = 0.4335
  • P(X ≤ 2) = 0.2381
  • P(X = 3) = 0.4335 - 0.2381 = 0.1954

Example 2: At Most

Problem: What is P(X ≤ 2) when λ = 4?

Solution: Read directly from table

  • P(X ≤ 2) = 0.2381

Example 3: At Least

Problem: What is P(X ≥ 5) when λ = 4?

Solution:

  • P(X ≥ 5) = 1 - P(X ≤ 4)
  • P(X ≥ 5) = 1 - 0.6288 = 0.3712

Poisson Approximation to Binomial

When n is large (n ≥ 20) and p is small (p ≤ 0.05):

Binomial(n,p)Poisson(λ=np)\text{Binomial}(n, p) \approx \text{Poisson}(\lambda = np)


Advertisement

Need to calculate values?

Use our free calculators to compute statistics without looking up tables manually.

Browse Calculators →