Poisson Distribution Table
The Poisson distribution models the number of events occurring in a fixed interval of time or space, given a known average rate (λ).
Poisson Probability Formula
The probability of observing exactly k events is:
P(X = k) = (e^(-λ) × λ^k) / k!
Where:
- λ (lambda) = average rate (mean number of events)
- k = number of events
- e ≈ 2.71828
Cumulative Probabilities P(X ≤ k)
λ = 0.5 to 2.5
| k | λ=0.5 | λ=1.0 | λ=1.5 | λ=2.0 | λ=2.5 |
|---|---|---|---|---|---|
| 0 | 0.6065 | 0.3679 | 0.2231 | 0.1353 | 0.0821 |
| 1 | 0.9098 | 0.7358 | 0.5578 | 0.4060 | 0.2873 |
| 2 | 0.9856 | 0.9197 | 0.8088 | 0.6767 | 0.5438 |
| 3 | 0.9982 | 0.9810 | 0.9344 | 0.8571 | 0.7576 |
| 4 | 0.9998 | 0.9963 | 0.9814 | 0.9473 | 0.8912 |
| 5 | 1.0000 | 0.9994 | 0.9955 | 0.9834 | 0.9580 |
| 6 | 1.0000 | 0.9999 | 0.9991 | 0.9955 | 0.9858 |
| 7 | 1.0000 | 1.0000 | 0.9998 | 0.9989 | 0.9958 |
| 8 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9989 |
| 9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 |
| 10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
λ = 3.0 to 5.0
| k | λ=3.0 | λ=3.5 | λ=4.0 | λ=4.5 | λ=5.0 |
|---|---|---|---|---|---|
| 0 | 0.0498 | 0.0302 | 0.0183 | 0.0111 | 0.0067 |
| 1 | 0.1991 | 0.1359 | 0.0916 | 0.0611 | 0.0404 |
| 2 | 0.4232 | 0.3208 | 0.2381 | 0.1736 | 0.1247 |
| 3 | 0.6472 | 0.5366 | 0.4335 | 0.3423 | 0.2650 |
| 4 | 0.8153 | 0.7254 | 0.6288 | 0.5321 | 0.4405 |
| 5 | 0.9161 | 0.8576 | 0.7851 | 0.7029 | 0.6160 |
| 6 | 0.9665 | 0.9347 | 0.8893 | 0.8311 | 0.7622 |
| 7 | 0.9881 | 0.9733 | 0.9489 | 0.9134 | 0.8666 |
| 8 | 0.9962 | 0.9901 | 0.9786 | 0.9597 | 0.9319 |
| 9 | 0.9989 | 0.9967 | 0.9919 | 0.9829 | 0.9682 |
| 10 | 0.9997 | 0.9990 | 0.9972 | 0.9933 | 0.9863 |
| 11 | 0.9999 | 0.9997 | 0.9991 | 0.9976 | 0.9945 |
| 12 | 1.0000 | 0.9999 | 0.9997 | 0.9992 | 0.9980 |
| 13 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9993 |
| 14 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 |
| 15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
λ = 6.0 to 10.0
| k | λ=6.0 | λ=7.0 | λ=8.0 | λ=9.0 | λ=10.0 |
|---|---|---|---|---|---|
| 0 | 0.0025 | 0.0009 | 0.0003 | 0.0001 | 0.0000 |
| 1 | 0.0174 | 0.0073 | 0.0030 | 0.0012 | 0.0005 |
| 2 | 0.0620 | 0.0296 | 0.0138 | 0.0062 | 0.0028 |
| 3 | 0.1512 | 0.0818 | 0.0424 | 0.0212 | 0.0103 |
| 4 | 0.2851 | 0.1730 | 0.0996 | 0.0550 | 0.0293 |
| 5 | 0.4457 | 0.3007 | 0.1912 | 0.1157 | 0.0671 |
| 6 | 0.6063 | 0.4497 | 0.3134 | 0.2068 | 0.1301 |
| 7 | 0.7440 | 0.5987 | 0.4530 | 0.3239 | 0.2202 |
| 8 | 0.8472 | 0.7291 | 0.5925 | 0.4557 | 0.3328 |
| 9 | 0.9161 | 0.8305 | 0.7166 | 0.5874 | 0.4579 |
| 10 | 0.9574 | 0.9015 | 0.8159 | 0.7060 | 0.5830 |
| 11 | 0.9799 | 0.9467 | 0.8881 | 0.8030 | 0.6968 |
| 12 | 0.9912 | 0.9730 | 0.9362 | 0.8758 | 0.7916 |
| 13 | 0.9964 | 0.9872 | 0.9658 | 0.9261 | 0.8645 |
| 14 | 0.9986 | 0.9943 | 0.9827 | 0.9585 | 0.9165 |
| 15 | 0.9995 | 0.9976 | 0.9918 | 0.9780 | 0.9513 |
| 16 | 0.9998 | 0.9990 | 0.9963 | 0.9889 | 0.9730 |
| 17 | 0.9999 | 0.9996 | 0.9984 | 0.9947 | 0.9857 |
| 18 | 1.0000 | 0.9999 | 0.9993 | 0.9976 | 0.9928 |
| 19 | 1.0000 | 1.0000 | 0.9997 | 0.9989 | 0.9965 |
| 20 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9984 |
λ = 12 to 20
| k | λ=12 | λ=14 | λ=16 | λ=18 | λ=20 |
|---|---|---|---|---|---|
| 5 | 0.0203 | 0.0055 | 0.0014 | 0.0003 | 0.0001 |
| 6 | 0.0458 | 0.0142 | 0.0040 | 0.0010 | 0.0003 |
| 7 | 0.0895 | 0.0316 | 0.0100 | 0.0029 | 0.0008 |
| 8 | 0.1550 | 0.0621 | 0.0220 | 0.0071 | 0.0021 |
| 9 | 0.2424 | 0.1094 | 0.0433 | 0.0154 | 0.0050 |
| 10 | 0.3472 | 0.1757 | 0.0774 | 0.0304 | 0.0108 |
| 11 | 0.4616 | 0.2600 | 0.1270 | 0.0549 | 0.0214 |
| 12 | 0.5760 | 0.3585 | 0.1931 | 0.0917 | 0.0390 |
| 13 | 0.6815 | 0.4644 | 0.2745 | 0.1426 | 0.0661 |
| 14 | 0.7720 | 0.5704 | 0.3675 | 0.2081 | 0.1049 |
| 15 | 0.8444 | 0.6694 | 0.4667 | 0.2867 | 0.1565 |
| 16 | 0.8987 | 0.7559 | 0.5660 | 0.3751 | 0.2211 |
| 17 | 0.9370 | 0.8272 | 0.6593 | 0.4686 | 0.2970 |
| 18 | 0.9626 | 0.8826 | 0.7423 | 0.5622 | 0.3814 |
| 19 | 0.9787 | 0.9235 | 0.8122 | 0.6509 | 0.4703 |
| 20 | 0.9884 | 0.9521 | 0.8682 | 0.7307 | 0.5591 |
| 21 | 0.9939 | 0.9712 | 0.9108 | 0.7991 | 0.6437 |
| 22 | 0.9970 | 0.9833 | 0.9418 | 0.8551 | 0.7206 |
| 23 | 0.9985 | 0.9907 | 0.9633 | 0.8989 | 0.7875 |
| 24 | 0.9993 | 0.9950 | 0.9777 | 0.9317 | 0.8432 |
| 25 | 0.9997 | 0.9974 | 0.9869 | 0.9554 | 0.8878 |
Individual Probabilities P(X = k)
λ = 5.0
| k | P(X = k) |
|---|---|
| 0 | 0.0067 |
| 1 | 0.0337 |
| 2 | 0.0842 |
| 3 | 0.1404 |
| 4 | 0.1755 |
| 5 | 0.1755 |
| 6 | 0.1462 |
| 7 | 0.1044 |
| 8 | 0.0653 |
| 9 | 0.0363 |
| 10 | 0.0181 |
How to Calculate Probabilities
Individual Probability: P(X = k)
“At least” Probability: P(X ≥ k)
Range: P(a ≤ X ≤ b)
When to Use Poisson Distribution
✓ Events occur independently
✓ The rate (λ) is constant
✓ Two events cannot occur simultaneously
✓ Counting events in a fixed interval
Common Applications
| Application | λ represents |
|---|---|
| Call center | Calls per hour |
| Manufacturing | Defects per unit |
| Traffic | Accidents per month |
| Biology | Mutations per generation |
| Queuing | Arrivals per time period |
| Insurance | Claims per year |
Poisson Mean and Variance
| Parameter | Value |
|---|---|
| Mean (μ) | λ |
| Variance (σ²) | λ |
| Standard Deviation (σ) | √λ |
Note: For Poisson, mean = variance = λ
Example Problems
Example 1: Exact Probability
Problem: A call center receives an average of 4 calls per hour. What is P(exactly 3 calls)?
Solution (λ = 4):
- P(X ≤ 3) = 0.4335
- P(X ≤ 2) = 0.2381
- P(X = 3) = 0.4335 - 0.2381 = 0.1954
Example 2: At Most
Problem: What is P(X ≤ 2) when λ = 4?
Solution: Read directly from table
- P(X ≤ 2) = 0.2381
Example 3: At Least
Problem: What is P(X ≥ 5) when λ = 4?
Solution:
- P(X ≥ 5) = 1 - P(X ≤ 4)
- P(X ≥ 5) = 1 - 0.6288 = 0.3712
Poisson Approximation to Binomial
When n is large (n ≥ 20) and p is small (p ≤ 0.05):
Related Resources
- Poisson Distribution Lesson - Complete guide
- Binomial Table - For fixed trials
- Probability Calculator - Calculate probabilities
- Exponential Distribution - Time between events