Distribution Tables

Binomial Distribution Table

Complete binomial probability table with cumulative and individual probabilities for various n and p values.

Binomial Distribution Table

The binomial table shows probabilities for the binomial distribution, which models the number of successes in a fixed number of independent trials.

Binomial Probability Formula

P(X=k)=(nk)pk(1p)nkP(X = k) = \binom{n}{k} p^k (1-p)^{n-k}

Where:

  • n = number of trials
  • k = number of successes
  • p = probability of success on each trial

Cumulative Probabilities P(X ≤ k)

n = 5 trials

kp=0.05p=0.10p=0.15p=0.20p=0.25p=0.30p=0.35p=0.40p=0.45p=0.50
00.77380.59050.44370.32770.23730.16810.11600.07780.05030.0313
10.97740.91850.83520.73730.63280.52820.42840.33700.25620.1875
20.99880.99140.97340.94210.89650.83690.76480.68260.59310.5000
31.00000.99950.99780.99330.98440.96920.94600.91300.86880.8125
41.00001.00000.99990.99970.99900.99760.99470.98980.98150.9688
51.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000

n = 10 trials

kp=0.05p=0.10p=0.15p=0.20p=0.25p=0.30p=0.35p=0.40p=0.45p=0.50
00.59870.34870.19690.10740.05630.02820.01350.00600.00250.0010
10.91390.73610.54430.37580.24400.14930.08600.04640.02330.0107
20.98850.92980.82020.67780.52560.38280.26160.16730.09960.0547
30.99900.98720.95000.87910.77590.64960.51380.38230.26600.1719
40.99990.99840.99010.96720.92190.84970.75150.63310.50440.3770
51.00000.99990.99860.99360.98030.95270.90510.83380.73840.6230
61.00001.00000.99990.99910.99650.98940.97400.94520.89800.8281
71.00001.00001.00000.99990.99960.99840.99520.98770.97260.9453
81.00001.00001.00001.00001.00000.99990.99950.99830.99550.9893
91.00001.00001.00001.00001.00001.00001.00000.99990.99970.9990
101.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000

n = 15 trials

kp=0.05p=0.10p=0.20p=0.25p=0.30p=0.40p=0.50
00.46330.20590.03520.01340.00470.00050.0000
10.82900.54900.16710.08020.03530.00520.0005
20.96380.81590.39800.23610.12680.02710.0037
30.99450.94440.64820.46130.29690.09050.0176
40.99940.98730.83580.68650.51550.21730.0592
50.99990.99780.93890.85160.72160.40320.1509
61.00000.99970.98190.94340.86890.60980.3036
71.00001.00000.99580.98270.95000.78690.5000
81.00001.00000.99920.99580.98480.90500.6964
91.00001.00000.99990.99920.99630.96620.8491
101.00001.00001.00000.99990.99930.99070.9408
111.00001.00001.00001.00000.99990.99810.9824
121.00001.00001.00001.00001.00000.99970.9963
131.00001.00001.00001.00001.00001.00000.9995
141.00001.00001.00001.00001.00001.00001.0000
151.00001.00001.00001.00001.00001.00001.0000

n = 20 trials

kp=0.05p=0.10p=0.20p=0.25p=0.30p=0.40p=0.50
00.35850.12160.01150.00320.00080.00000.0000
10.73580.39170.06920.02430.00760.00050.0000
20.92450.67690.20610.09130.03550.00360.0002
30.98410.86700.41140.22520.10710.01600.0013
40.99740.95680.62960.41480.23750.05100.0059
50.99970.98870.80420.61720.41640.12560.0207
61.00000.99760.91330.78580.60800.25000.0577
71.00000.99960.96790.89820.77230.41590.1316
81.00000.99990.99000.95910.88670.59560.2517
91.00001.00000.99740.98610.95200.75530.4119
101.00001.00000.99940.99610.98290.87250.5881
111.00001.00000.99990.99910.99490.94350.7483
121.00001.00001.00000.99980.99870.97900.8684
131.00001.00001.00001.00000.99970.99350.9423
141.00001.00001.00001.00001.00000.99840.9793
151.00001.00001.00001.00001.00000.99970.9941
161.00001.00001.00001.00001.00001.00000.9987
171.00001.00001.00001.00001.00001.00000.9998
181.00001.00001.00001.00001.00001.00001.0000
191.00001.00001.00001.00001.00001.00001.0000
201.00001.00001.00001.00001.00001.00001.0000

Individual Probabilities P(X = k)

n = 10, p = 0.50

kP(X = k)
00.0010
10.0098
20.0439
30.1172
40.2051
50.2461
60.2051
70.1172
80.0439
90.0098
100.0010

How to Calculate Probabilities

Individual Probability: P(X = k)

Read directly from individual probability tables, or: P(X=k)=P(Xk)P(Xk1)P(X = k) = P(X \leq k) - P(X \leq k-1)

“At least” Probability: P(X ≥ k)

P(Xk)=1P(Xk1)P(X \geq k) = 1 - P(X \leq k-1)

Range Probability: P(a ≤ X ≤ b)

P(aXb)=P(Xb)P(Xa1)P(a \leq X \leq b) = P(X \leq b) - P(X \leq a-1)


When to Use Binomial Distribution

✓ Fixed number of trials (n)
✓ Each trial has two outcomes (success/failure)
✓ Constant probability of success (p)
✓ Independent trials


Example Problems

Example 1: Exact Probability

Problem: What is P(X = 3) when n = 10, p = 0.30?

Solution:

  • P(X ≤ 3) = 0.6496
  • P(X ≤ 2) = 0.3828
  • P(X = 3) = 0.6496 - 0.3828 = 0.2668

Example 2: At Least

Problem: What is P(X ≥ 4) when n = 10, p = 0.30?

Solution:

  • P(X ≥ 4) = 1 - P(X ≤ 3)
  • P(X ≥ 4) = 1 - 0.6496 = 0.3504

Binomial Mean and Standard Deviation

ParameterFormula
Meanμ = np
Varianceσ² = np(1-p)
Standard Deviationσ = √np(1-p)

Advertisement

Need to calculate values?

Use our free calculators to compute statistics without looking up tables manually.

Browse Calculators →