Binomial Distribution Table
The binomial table shows probabilities for the binomial distribution, which models the number of successes in a fixed number of independent trials.
Binomial Probability Formula
Where:
- n = number of trials
- k = number of successes
- p = probability of success on each trial
Cumulative Probabilities P(X ≤ k)
n = 5 trials
| k | p=0.05 | p=0.10 | p=0.15 | p=0.20 | p=0.25 | p=0.30 | p=0.35 | p=0.40 | p=0.45 | p=0.50 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.7738 | 0.5905 | 0.4437 | 0.3277 | 0.2373 | 0.1681 | 0.1160 | 0.0778 | 0.0503 | 0.0313 |
| 1 | 0.9774 | 0.9185 | 0.8352 | 0.7373 | 0.6328 | 0.5282 | 0.4284 | 0.3370 | 0.2562 | 0.1875 |
| 2 | 0.9988 | 0.9914 | 0.9734 | 0.9421 | 0.8965 | 0.8369 | 0.7648 | 0.6826 | 0.5931 | 0.5000 |
| 3 | 1.0000 | 0.9995 | 0.9978 | 0.9933 | 0.9844 | 0.9692 | 0.9460 | 0.9130 | 0.8688 | 0.8125 |
| 4 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9990 | 0.9976 | 0.9947 | 0.9898 | 0.9815 | 0.9688 |
| 5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
n = 10 trials
| k | p=0.05 | p=0.10 | p=0.15 | p=0.20 | p=0.25 | p=0.30 | p=0.35 | p=0.40 | p=0.45 | p=0.50 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.5987 | 0.3487 | 0.1969 | 0.1074 | 0.0563 | 0.0282 | 0.0135 | 0.0060 | 0.0025 | 0.0010 |
| 1 | 0.9139 | 0.7361 | 0.5443 | 0.3758 | 0.2440 | 0.1493 | 0.0860 | 0.0464 | 0.0233 | 0.0107 |
| 2 | 0.9885 | 0.9298 | 0.8202 | 0.6778 | 0.5256 | 0.3828 | 0.2616 | 0.1673 | 0.0996 | 0.0547 |
| 3 | 0.9990 | 0.9872 | 0.9500 | 0.8791 | 0.7759 | 0.6496 | 0.5138 | 0.3823 | 0.2660 | 0.1719 |
| 4 | 0.9999 | 0.9984 | 0.9901 | 0.9672 | 0.9219 | 0.8497 | 0.7515 | 0.6331 | 0.5044 | 0.3770 |
| 5 | 1.0000 | 0.9999 | 0.9986 | 0.9936 | 0.9803 | 0.9527 | 0.9051 | 0.8338 | 0.7384 | 0.6230 |
| 6 | 1.0000 | 1.0000 | 0.9999 | 0.9991 | 0.9965 | 0.9894 | 0.9740 | 0.9452 | 0.8980 | 0.8281 |
| 7 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9984 | 0.9952 | 0.9877 | 0.9726 | 0.9453 |
| 8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9983 | 0.9955 | 0.9893 |
| 9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9990 |
| 10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
n = 15 trials
| k | p=0.05 | p=0.10 | p=0.20 | p=0.25 | p=0.30 | p=0.40 | p=0.50 |
|---|---|---|---|---|---|---|---|
| 0 | 0.4633 | 0.2059 | 0.0352 | 0.0134 | 0.0047 | 0.0005 | 0.0000 |
| 1 | 0.8290 | 0.5490 | 0.1671 | 0.0802 | 0.0353 | 0.0052 | 0.0005 |
| 2 | 0.9638 | 0.8159 | 0.3980 | 0.2361 | 0.1268 | 0.0271 | 0.0037 |
| 3 | 0.9945 | 0.9444 | 0.6482 | 0.4613 | 0.2969 | 0.0905 | 0.0176 |
| 4 | 0.9994 | 0.9873 | 0.8358 | 0.6865 | 0.5155 | 0.2173 | 0.0592 |
| 5 | 0.9999 | 0.9978 | 0.9389 | 0.8516 | 0.7216 | 0.4032 | 0.1509 |
| 6 | 1.0000 | 0.9997 | 0.9819 | 0.9434 | 0.8689 | 0.6098 | 0.3036 |
| 7 | 1.0000 | 1.0000 | 0.9958 | 0.9827 | 0.9500 | 0.7869 | 0.5000 |
| 8 | 1.0000 | 1.0000 | 0.9992 | 0.9958 | 0.9848 | 0.9050 | 0.6964 |
| 9 | 1.0000 | 1.0000 | 0.9999 | 0.9992 | 0.9963 | 0.9662 | 0.8491 |
| 10 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9993 | 0.9907 | 0.9408 |
| 11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9981 | 0.9824 |
| 12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9963 |
| 13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9995 |
| 14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
n = 20 trials
| k | p=0.05 | p=0.10 | p=0.20 | p=0.25 | p=0.30 | p=0.40 | p=0.50 |
|---|---|---|---|---|---|---|---|
| 0 | 0.3585 | 0.1216 | 0.0115 | 0.0032 | 0.0008 | 0.0000 | 0.0000 |
| 1 | 0.7358 | 0.3917 | 0.0692 | 0.0243 | 0.0076 | 0.0005 | 0.0000 |
| 2 | 0.9245 | 0.6769 | 0.2061 | 0.0913 | 0.0355 | 0.0036 | 0.0002 |
| 3 | 0.9841 | 0.8670 | 0.4114 | 0.2252 | 0.1071 | 0.0160 | 0.0013 |
| 4 | 0.9974 | 0.9568 | 0.6296 | 0.4148 | 0.2375 | 0.0510 | 0.0059 |
| 5 | 0.9997 | 0.9887 | 0.8042 | 0.6172 | 0.4164 | 0.1256 | 0.0207 |
| 6 | 1.0000 | 0.9976 | 0.9133 | 0.7858 | 0.6080 | 0.2500 | 0.0577 |
| 7 | 1.0000 | 0.9996 | 0.9679 | 0.8982 | 0.7723 | 0.4159 | 0.1316 |
| 8 | 1.0000 | 0.9999 | 0.9900 | 0.9591 | 0.8867 | 0.5956 | 0.2517 |
| 9 | 1.0000 | 1.0000 | 0.9974 | 0.9861 | 0.9520 | 0.7553 | 0.4119 |
| 10 | 1.0000 | 1.0000 | 0.9994 | 0.9961 | 0.9829 | 0.8725 | 0.5881 |
| 11 | 1.0000 | 1.0000 | 0.9999 | 0.9991 | 0.9949 | 0.9435 | 0.7483 |
| 12 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9987 | 0.9790 | 0.8684 |
| 13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9935 | 0.9423 |
| 14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9984 | 0.9793 |
| 15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9941 |
| 16 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9987 |
| 17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 |
| 18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 19 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Individual Probabilities P(X = k)
n = 10, p = 0.50
| k | P(X = k) |
|---|---|
| 0 | 0.0010 |
| 1 | 0.0098 |
| 2 | 0.0439 |
| 3 | 0.1172 |
| 4 | 0.2051 |
| 5 | 0.2461 |
| 6 | 0.2051 |
| 7 | 0.1172 |
| 8 | 0.0439 |
| 9 | 0.0098 |
| 10 | 0.0010 |
How to Calculate Probabilities
Individual Probability: P(X = k)
Read directly from individual probability tables, or:
“At least” Probability: P(X ≥ k)
Range Probability: P(a ≤ X ≤ b)
When to Use Binomial Distribution
✓ Fixed number of trials (n)
✓ Each trial has two outcomes (success/failure)
✓ Constant probability of success (p)
✓ Independent trials
Example Problems
Example 1: Exact Probability
Problem: What is P(X = 3) when n = 10, p = 0.30?
Solution:
- P(X ≤ 3) = 0.6496
- P(X ≤ 2) = 0.3828
- P(X = 3) = 0.6496 - 0.3828 = 0.2668
Example 2: At Least
Problem: What is P(X ≥ 4) when n = 10, p = 0.30?
Solution:
- P(X ≥ 4) = 1 - P(X ≤ 3)
- P(X ≥ 4) = 1 - 0.6496 = 0.3504
Binomial Mean and Standard Deviation
| Parameter | Formula |
|---|---|
| Mean | μ = np |
| Variance | σ² = np(1-p) |
| Standard Deviation | σ = √np(1-p) |
Related Resources
- Binomial Distribution Lesson - Complete guide
- Probability Calculator - Calculate probabilities
- Normal Approximation - When n is large
- Poisson Table - For rare events