Interactive t-Table Calculator
Find Critical t-Value
df = n - 1 for one sample
Critical t-value (tα/2, 10)
±2.2281
Reject H₀ if |t| > 2.2281
Student’s t-Distribution Table
The t-table provides critical values for the t-distribution, used when the population standard deviation is unknown and the sample size is small.
How to Use This Table
- Calculate degrees of freedom: df = n - 1 (for one-sample) or df = n₁ + n₂ - 2 (for two-sample)
- Choose your significance level (α) and whether the test is one-tailed or two-tailed
- Find the intersection of df row and α column
Critical Values (Upper Tail)
This table gives t-values where P(T > t) = α (area in the upper tail).
| df | α = 0.10 | α = 0.05 | α = 0.025 | α = 0.01 | α = 0.005 | α = 0.001 |
|---|---|---|---|---|---|---|
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 318.309 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 |
| 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 |
| 8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 |
| 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 |
| 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 |
| 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 |
| 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 |
| 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 |
| 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 |
| 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 |
| 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 |
| 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 |
| 35 | 1.306 | 1.690 | 2.030 | 2.438 | 2.724 | 3.340 |
| 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 |
| 45 | 1.301 | 1.679 | 2.014 | 2.412 | 2.690 | 3.281 |
| 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 |
| 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 |
| 70 | 1.294 | 1.667 | 1.994 | 2.381 | 2.648 | 3.211 |
| 80 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 |
| 90 | 1.291 | 1.662 | 1.987 | 2.369 | 2.632 | 3.183 |
| 100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 |
| 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 |
| ∞ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 |
Common Confidence Interval Values
For two-tailed tests (most common for confidence intervals):
| Confidence Level | α (two-tailed) | Use column |
|---|---|---|
| 80% | 0.20 | α = 0.10 |
| 90% | 0.10 | α = 0.05 |
| 95% | 0.05 | α = 0.025 |
| 98% | 0.02 | α = 0.01 |
| 99% | 0.01 | α = 0.005 |
Two-Tailed Critical Values
For two-tailed tests, use these columns:
| df | 80% CI | 90% CI | 95% CI | 98% CI | 99% CI |
|---|---|---|---|---|---|
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 |
| 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 |
| ∞ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 |
When to Use t vs z
| Use t-distribution when: | Use z-distribution when: |
|---|---|
| σ (population SD) is unknown | σ (population SD) is known |
| Sample size is small (n < 30) | Sample size is large (n ≥ 30) |
| Using sample SD (s) | Or for proportions |
Degrees of Freedom
| Test Type | Degrees of Freedom |
|---|---|
| One-sample t-test | df = n - 1 |
| Paired t-test | df = n - 1 (n = number of pairs) |
| Two-sample t-test (pooled) | df = n₁ + n₂ - 2 |
| Two-sample t-test (Welch’s) | Complex formula (software calculated) |
Example: Using the t-Table
Problem: A sample of 16 students has a mean test score of 75. Test if this differs from the population mean of 70 at α = 0.05 (two-tailed).
Solution:
- df = n - 1 = 16 - 1 = 15
- Two-tailed test at α = 0.05, use column α = 0.025
- Critical value: t = ±2.131
- If |calculated t| > 2.131, reject H₀
Related Resources
- T-Test Calculator - Perform t-tests automatically
- t-Distribution Lesson - Understand when and why to use t
- Z-Table - For large samples or known σ
- Confidence Intervals - Building intervals with t