Distribution Tables

Chi-Square (χ²) Distribution Table

Complete chi-square distribution table with critical values for goodness-of-fit tests, independence tests, and variance testing.

Interactive Chi-Square Table Calculator

Find Critical χ² Value

For goodness-of-fit: df = k - 1
Critical χ² value (χ²α,5)
11.0705
Reject H₀ if χ² > 11.0705
Common uses:
  • Goodness-of-fit test: df = (number of categories) - 1
  • Test of independence: df = (rows - 1) × (columns - 1)
  • Test of homogeneity: df = (rows - 1) × (columns - 1)

Chi-Square Distribution Table

The chi-square table provides critical values for the χ² distribution, used in hypothesis testing for categorical data and variance.

How to Use This Table

  1. Determine degrees of freedom (df) based on your test type
  2. Choose your significance level (α)
  3. Find the critical value at the intersection

Critical Values (Upper Tail)

Values where P(χ² > critical value) = α

dfα = 0.995α = 0.99α = 0.975α = 0.95α = 0.90α = 0.10α = 0.05α = 0.025α = 0.01α = 0.005
10.0000.0000.0010.0040.0162.7063.8415.0246.6357.879
20.0100.0200.0510.1030.2114.6055.9917.3789.21010.597
30.0720.1150.2160.3520.5846.2517.8159.34811.34512.838
40.2070.2970.4840.7111.0647.7799.48811.14313.27714.860
50.4120.5540.8311.1451.6109.23611.07012.83315.08616.750
60.6760.8721.2371.6352.20410.64512.59214.44916.81218.548
70.9891.2391.6902.1672.83312.01714.06716.01318.47520.278
81.3441.6462.1802.7333.49013.36215.50717.53520.09021.955
91.7352.0882.7003.3254.16814.68416.91919.02321.66623.589
102.1562.5583.2473.9404.86515.98718.30720.48323.20925.188
112.6033.0533.8164.5755.57817.27519.67521.92024.72526.757
123.0743.5714.4045.2266.30418.54921.02623.33726.21728.300
133.5654.1075.0095.8927.04219.81222.36224.73627.68829.819
144.0754.6605.6296.5717.79021.06423.68526.11929.14131.319
154.6015.2296.2627.2618.54722.30724.99627.48830.57832.801
165.1425.8126.9087.9629.31223.54226.29628.84532.00034.267
175.6976.4087.5648.67210.08524.76927.58730.19133.40935.718
186.2657.0158.2319.39010.86525.98928.86931.52634.80537.156
196.8447.6338.90710.11711.65127.20430.14432.85236.19138.582
207.4348.2609.59110.85112.44328.41231.41034.17037.56639.997
218.0348.89710.28311.59113.24029.61532.67135.47938.93241.401
228.6439.54210.98212.33814.04130.81333.92436.78140.28942.796
239.26010.19611.68913.09114.84832.00735.17238.07641.63844.181
249.88610.85612.40113.84815.65933.19636.41539.36442.98045.559
2510.52011.52413.12014.61116.47334.38237.65240.64644.31446.928
2611.16012.19813.84415.37917.29235.56338.88541.92345.64248.290
2711.80812.87914.57316.15118.11436.74140.11343.19546.96349.645
2812.46113.56515.30816.92818.93937.91641.33744.46148.27850.993
2913.12114.25616.04717.70819.76839.08742.55745.72249.58852.336
3013.78714.95316.79118.49320.59940.25643.77346.97950.89253.672
4020.70722.16424.43326.50929.05151.80555.75859.34263.69166.766
5027.99129.70732.35734.76437.68963.16767.50571.42076.15479.490
6035.53437.48540.48243.18846.45974.39779.08283.29888.37991.952
7043.27545.44248.75851.73955.32985.52790.53195.023100.425104.215
8051.17253.54057.15360.39164.27896.578101.879106.629112.329116.321
9059.19661.75465.64769.12673.291107.565113.145118.136124.116128.299
10067.32870.06574.22277.92982.358118.498124.342129.561135.807140.169

Common Chi-Square Tests

Goodness-of-Fit Test

df = k - 1 where k = number of categories

Categoriesdf
21
32
43
54
65

Test of Independence

df = (r - 1)(c - 1) where r = rows, c = columns

Table Sizedf
2×21
2×32
3×34
3×46
4×49
4×512

Quick Reference: Common Critical Values

Most Used Values (α = 0.05)

dfCritical Value
13.841
25.991
37.815
49.488
511.070
1018.307
1524.996
2031.410

Chi-Square Test Formula

χ2=(OE)2E\chi^2 = \sum \frac{(O - E)^2}{E}

Where:

  • O = Observed frequency
  • E = Expected frequency

Decision Rule

  • If χ² ≥ critical value → Reject H₀
  • If χ² < critical value → Fail to reject H₀

Example: Test of Independence

Problem: Testing if gender and product preference are independent using a 2×3 table with α = 0.05.

Solution:

  1. df = (2-1)(3-1) = 2
  2. Look up df=2, α=0.05: Critical value = 5.991
  3. If calculated χ² > 5.991, reject independence

Assumptions

For valid chi-square tests:

  1. ✓ Data must be frequencies (counts)
  2. ✓ Categories must be mutually exclusive
  3. ✓ Expected frequency ≥ 5 in each cell (ideal)
  4. ✓ Observations must be independent

Advertisement

Need to calculate values?

Use our free calculators to compute statistics without looking up tables manually.

Browse Calculators →